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SymbolS and UnitS

SymbolS and UnitS

Symbols and Units
At A-Level, you’re expected to use standard scientific notation.  This means using conventional 
symbols and units, and writing very large and very small numbers in standard form.

Make sure you give your answers to questions to a sensible number of significant figures. 
An easy way to do this is by always rounding your answers to the same number of significant 
figures as the given data value you’ve used in the calculation with the least significant figures.
Then write the number of significant figures you’ve rounded your answer to: 
e.g.  2 ÷ 3.5 = 0.571... = 0.6 (to 1 s.f.) 
(2 is to 1 s.f., 3.5 is to 2 s.f., so the answer needs to be given to 1 s.f.)

At A-Level, units like m/s are  
written ms–1.  
This is just index notation.  
(If it doesn’t make sense to you, look up 
‘rules of indices’ in a maths book.)

The table below lists the different quantities  
you’ll come across in this book, with their 
standard symbols and units:

Quantity Symbol Unit

Displacement 
(distance)

s metre, m

Time t second, s

Velocity (speed) v
metre per 

second, ms–1

Acceleration a
metre per 

second squared, 
ms–2

Mass m kilogram, kg

Force F newton, N

Gravitational field 
strength 

g
newton per 

kilogram, N kg –1

Energy E joule, J

Work W joule, J

Power P watt, W

Frequency f hertz, Hz

Wavelength λ metre, m

Charge Q coulomb, C

Electric current I ampere, A

Potential difference V volt, V

Resistance R ohm, Ω 

You might also see large or small 
numbers given in units with 
these prefixes:

Multiple Prefix Symbol

1012 tera T

109 giga G

106 mega M

103 kilo k

10–2 centi c

10–3 milli m

10–6 micro m

10–9 nano n

10–12 pico p

10–15 femto f

Standard form lets us write very big 
or very small numbers in a more 
convenient way. It looks like this: 

 
For example: 
53 100 can be written as 5.31 × 104, 
and 2.5 × 10–3 is the same as 0.0025.

A must be 
between 1 
and 10

n is the number 
of places the 
decimal point 
moves

A × 10n
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Section 1 — ForceS and motion

Speed, Displacement and Velocity

Displacement is a Vector Quantity

To get from point A to point B you need to know what direction to travel in — just knowing
the distance you need to travel isn’t enough.  
This information, distance plus direction, is known as the displacement from A to B and has 
the symbol s.  It’s a vector quantity — all vector quantities have both a size and a direction.

Displacement’s in a relationship with velocity now, it’s so over time...
1) An athlete runs a 1500 m race in a time of 210 seconds.  What is his average speed?
2) The speed of light is 3.0 × 108 ms–1.  If it takes light from the Sun 8.3 minutes to reach us, 

what is the distance from the Earth to the Sun?
3) A snail crawls at a speed of 0.24 centimetres per second.   

How long does it take the snail to travel 1.5 metres?
4) How long does it take a train travelling with a velocity of 50 ms–1 north to travel 1 km?
5) If someone has a velocity of 7.50 ms–1 south, what is their displacement after 15.0 seconds?

Distance, Time and Speed are all Related

Well aren’t
you a cutie...

You can then work out the spider’s average speed between A and B using this equation:

Points A and B are separated by a distance in metres.  Now imagine a spider walking from 
A to B — you can measure the time it takes, in seconds, for it to travel this distance.  

A B

This is a very useful equation, but it does have a couple of limitations:
1) It only tells you the average speed.  The spider could vary its speed 

from fast to slow and even go backwards.  So long as it gets from 
A to B in the same time you get the same answer. 

2) We assume that the spider takes the shortest possible path between 
the two points (a straight line), rather than meandering around. 

speed (in metres per second) = distance travelled (in metres) ÷ time taken (in seconds)

Or, in symbols:

There is a Relationship Between Displacement and Velocity

v = t
s

velocity (in metres per second) = displacement (in metres) ÷ time taken (in seconds)

This equation is very similar to the one relating speed and distance, 
except that it includes information about the direction of motion.

Velocity is another vector quantity — velocity is the speed and direction of an object.
The velocity of an object is given by the following equation:
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Drawing Displacements and Velocities

The simplest way to draw a vector is to draw an arrow.  So for a displacement vector the length 
of the arrow tells you the distance, and the way the arrow points shows you the direction.

You can do this even for very large displacements so long as you scale down.  
Whenever you do a scale drawing, make sure you state the scale you are using.

You can use Scale Drawings to Represent Displacement

A displacement of 3 metres 
upwards could be represented by 
an arrow of length 3 centimetres.  
Using this same scale (1 cm to 
1 m) a displacement of 7 metres 
to the right would be an arrow of 
length 7 centimetres.

EXAMPLE:  Draw arrows to scale to represent a displacement of 3 metres 
upwards and a displacement of 7 metres to the right.

A B

Drawing displacements — not about leaving your sketchbook at home...
1) Draw arrows representing the following displacements to the given scale: 

a) 12 m to the right (1 cm to 2 m) 
b) 110 miles at a bearing of 270° (1 cm to 20 miles)

2) Draw an arrow to represent each velocity to the given scale.  Take north to be up the page. 
a) 60 ms–1 to the south-east (1 cm to 15 ms–1)
b) 120 miles per hour to the west (1 cm to 30 miles per hour)

You can also Represent Velocities with Arrows

Velocity is a vector, so you can draw arrows to show velocities too.  This time, the longer 
the arrow, the greater the speed of the object.  A typical scale might be 1 cm to 1 ms–1.

Draw the velocities like this 
with a scale of 1 cm to 1 ms–1:

EXAMPLE:  Draw arrows to scale to represent velocities of 5 metres per 
second to the right and 3 metres per second downwards.

5 ms
–1

3 ms
–1

3m
7m

Scale: 1 cm to 1 m

Scale: 1 cm to 1 ms–1
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Change in velocity = Dv = final velocity – initial velocity. 
             

A2 + B2 = C2, so C = A B2 2+  = . .2 0 3 02 2+  = 3.605... = 3.6 ms–1 (to 2 s.f.)
(This answer is rounded to 2 s.f. to match the data in the question — see page 1.)

EXAMPLE:  An object has an initial velocity of 3.0 ms–1 to the right, and a final 
velocity of 2.0 ms–1 down.  Find the size of the change in velocity.

First, flip the direction and 
change the sign of the vector 
that is being subtracted.

3.0 ms
–1

2.0 ms
–1 – 3.0 ms

–1
2.0 ms

–1
+= =

3.0 ms
–1

2.0 ms
–1Dv

Combining Displacements and Velocities

Subtracting velocity vectors is easy — subtracting velociraptors, less so...
1) Find the size of the resultant of the following displacements by drawing the arrows “tip-to-tail”. 

a) 5.0 m right and 4.0 m up. 
b) 15.0 miles south and 15.0 miles on a bearing of 045°. 

2) Initial velocity = 1.0 ms–1 west and final velocity = 3.0 ms–1 north.  Find the size of Dv.

You can use Arrows to Add or Subtract Two Vectors...

To add two velocity or displacement vectors, you can’t simply add together the two distances 
as this doesn’t account for the different directions of the vectors.  What you do is:
1) Draw arrows representing the two vectors.
2) Place the arrows one after the other “tip-to-tail”.
3) Draw a third arrow from start to finish.  This is your resultant vector.

To subtract vectors you need to flip the direction of the vector you are subtracting.  
This changes the sign of the vector.  
Adding the flipped vector is the same as subtracting the vector.
For example:    – = +

3 m 4 m 3 m (– 4 m)
=

–1 m

+ =

R

4m

3m4m

N
3mN

060°

R is the resultant vector— it’s the sum of the two displacements.  
You can find the size of R by measuring the arrow and scaling up.  
In this case it’s 6.7 cm long which means the displacement is 6.7 m. 

EXAMPLE:  Add a displacement of 4 metres on a bearing of 090° to a displacement 
of 3 metres on a bearing of 060°.  Use a scale of 1 cm to 1 m.

scale: 1 cm to 1 m

...Or Use Pythagoras if the Vectors make a Right Angle Triangle

A

B

C
If two vectors, A and B, are at right angles to each other, 
you can also use Pythagoras’ theorem to find the resultant. 

A2 + B2 = C2
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Resolving Vectors

You can Split a Vector into Horizontal and Vertical Components

1) Vectors like velocity and displacement can be split into components. 
2) This is basically the opposite of finding the resultant — you start from the resultant 

vector and split it into two separate vectors at right angles to each other.  
3) Together these two components have the same effect as the original vector.  
4) To find the components of a vector, v, you need to use trigonometry:

Resolving is dead useful because the two components of a vector don’t affect each other.  
This means you can deal with the two directions completely separately.

If you throw a ball diagonally up and to the right...
•	 Only the vertical component of the velocity  

is affected by gravity (see page 7).
•	 You can calculate the ball’s vertical velocity  

(which will be affected by gravity).
•	 And you can calculate the ball’s horizontal 

velocity (which won’t be affected by gravity).

horizontal 
velocity 

vertical component 
of velocity 

velocity

Solve these questions by re-solving the vectors...
1) A rugby ball is moving at 12 ms–1 at an angle of 68° to the horizontal.  

Find the horizontal and vertical components of the ball’s velocity.
2) A plane is travelling at 98 ms–1 at a constant angle as it gains altitude.  

The horizontal velocity of the plane is 67 ms–1.  What is its angle of ascent?
3) A hot air balloon descends at a velocity of 5.9 ms–1  at an angle of 23° to the horizontal.  

How long does it take the balloon to descend 150 m?

It’s useful to start off by drawing a diagram:
Horizontal velocity = vx  = v cos θ  = 4.3 × cos 37 

= 3.434... = 3.4 ms–1 ( to 2 s.f.)
Vertical velocity = vy  = v sin θ  = 4.3 × sin 37 

= 2.587... = 2.6 ms–1 (to 2 s.f.)

EXAMPLE:  A helium balloon is floating away on the wind. 
It is travelling at 4.3 ms–1 at an angle of 37° to the horizontal.  
What are the vertical and horizontal components of its velocity?

v = 
4.

3 
m

s
–1

v cos �

v sin �

37°

thrown 
ball

You get the horizontal 
component vx like this:

...and the vertical 
component vy like this:

vx = v cos q

cos q  =  v
vx sin q  =  v

vy

vy = v sin q�

v
y

v
x

v

Rearranging this gives: Rearranging this gives: 

You can also rearrange 
these equations to  
find q.  E.g. if you 
know vx and v then:

q = cos –1 v
vx` j
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Acceleration

Acceleration — the Change in Velocity Every Second

Acceleration (in metres per second2) = 
(in seconds)

(inmetres per second)
time taken

change in velocity

So: Acceleration = 
–

time taken
final velocity initial velocity

You’ll often only need to think about velocities in one dimension, say left to right.
But you still need to recognise the difference between velocities from right to left 
and velocities from left to right.
Choose a direction to be positive — below, we’ll use right.  All velocities in this direction will 
from now on be positive, and all those in the opposite direction (left) will be negative.
Deceleration is negative acceleration and acts in the opposite direction to motion.

Acceleration is the rate of change of velocity.  Like velocity, it is a vector quantity 
(it has a size and a direction).  It is measured in metres per second squared (ms–2).

u = 0.00 ms–1  v = 25.0 ms–1 to the right = +25.0 ms–1

a = t
v u– , multiplying both sides by t gives a × t = v – u, 

and then dividing both sides by a gives t = a
v u– .  So, t = .

.
4 00

25 0 0–  = 6.25 s

EXAMPLE:  A dinosaur accelerates from rest at 4.00 ms–2 to the right.  If its final 
velocity is 25.0 ms–1 to the right, how long does it accelerate for?

u = 15.0 ms–1 to the right = +15.0 ms–1

v = 5.25 ms–1 to the left = –5.25 ms–1

So, a = .
. .

.

.
t

v u
30 0

5 25 15 0
30 0
20 25– – – –= =  = –0.675 ms–2

(The acceleration is negative so it’s to the left.)

EXAMPLE:  A car starts off moving to the right at 15.0 metres per second.  
After 30.0 seconds it is moving to the left at 5.25 metres per second.  
What was its acceleration during this time?

A seller rating is the key thing to check when buying a car online...
1) A train has an initial velocity of 12.8 ms–1 to the left.  After 22.0 seconds it is moving 

to the right at 18.3 ms–1.  What was its average acceleration during this time?
2) A ship accelerates at a uniform rate of 0.18 ms–2 east.  If its initial velocity is 1.5 ms–1 east and 

its final velocity is 4.5 ms–1 in the same direction, how long has it been accelerating for?
3) A rabbit is hopping at a constant speed when he begins decelerating at a rate of 0.41 ms–2.

What was the rabbit’s initial hopping speed if it takes him 3.7 seconds to come to a stop?

Or in symbols: a = t
v u–  = t

v∆ where u is the initial velocity, v is the final velocity 
and Dv is the change in velocity.
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Acceleration Due To Gravity

The Acceleration Due to Gravity is g

When an object is dropped, it accelerates downwards at a constant rate of roughly  
9.81 ms–2.  This is the acceleration due to gravity and it has the symbol g.  
It usually seems sensible to take the upward direction as positive and down as negative, 
making the acceleration due to gravity –9.81 ms–2.

u = 0
a = –9.81 ms–2

You can rearrange a = t
v u–  to give v = u + (a × t).

So v  = 0 + (–9.81 × 5.25) 
= 0 – 51.5025  
= –51.5025 = 51.5 ms–1 down (to 3 s.f.)

EXAMPLE:  What is the vertical velocity of a skydiver 5.25 seconds 
after she jumps out of a plane that is travelling at a constant 
altitude?  (Ignore air resistance and horizontal motion.)

v = 18.0 ms–1 down = –18.0 ms–1

a = –9.81 ms–2

You can rearrange a = t
v u–  to give u = v – (a × t).

So, u  = –18.0 – (–9.81 × 2.50) 
= –18.0 – (–24.525)  
= –18.0 + 24.525  
= 6.525 = 6.53 ms–1 upwards (to 3 s.f.)

EXAMPLE:  A diver jumps up off a springboard.  After 2.50 seconds he hits 
the water travelling downwards at 18.0 ms–1.  What was his initial 
vertical velocity?  (Ignore air resistance and horizontal motion.)

v

u

This isn’t falling, it’s learning with style...
You can ignore air resistance in these questions.  Hint — drawing a little diagram can help.
1) An apple falls from a tree and hits the ground at 4.9 ms–1.  For how long was it falling?
2) A stone is thrown straight downwards.  It hits the ground at 26.5 ms–1 after 2.15 seconds.  

What velocity was it thrown at?
3) A metal rod falls from a stationary helicopter.   

What velocity does it hit the ground at, 10.0 seconds later?
4) A sandbag is dropped from a stationary hot-air balloon.  It hits the ground at a velocity  

of 24.5 metres per second.  How long was it falling for?
5) A ball is thrown straight upwards.  After 1.90 seconds it is moving downwards  

at 10.7 ms–1 and is caught.  With what velocity was it thrown?
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Displacement-Time Graphs
D
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straight line,  
constant velocity
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flattening curve,  
velocity decreasing

You can Draw Graphs to Show How Far Something has Travelled

3) Important — these graphs only tell you about motion in one dimension.  
For example, a graph could tell you how far up a ball has been thrown, 
but not how far it has moved horizontally.  

1) A graph of displacement against time tells you how far an object is from 
a given point, in a given direction, as time goes on.  

2) As the object moves away from that point the displacement on the 
graph goes up, and as it moves towards it the displacement goes down:

D
is

p
la

c
e

m
e

n
t 

(m
)

Time (s)

MOVING AWAY

Time (s)

MOVING TOWARD

D
is

p
la

c
e

m
e

n
t 

(m
)

The Gradient of the Line is the Velocity

Velocity = displacement ÷ time (see p.2), so the gradient 
(slope) of a displacement-time graph tells you how fast an 
object is travelling, and what direction it is moving in.  
The greater the gradient, the larger the velocity. D

is
p

la
c
e

m
e

n
t 

(m
)

Time (s)

�t

�s

v = t
s

D
D

1) If the line is straight, the velocity is constant.
2) If the line is curved, the velocity is changing — the object is accelerating or decelerating.
3) A steepening curve means the object is accelerating and the velocity is getting larger.
4) A flattening curve means the object is decelerating and the velocity is getting smaller.

Steeper gradient = greater velocity — except when I try to run up a hill...
1) Sketch separate displacement-time graphs for a car in each of the following situations: 

a) Travelling away from the observer at a constant velocity. 
b) Travelling away from the observer and slowing down. 
c) Not moving, a short distance from the observer. 
d) Accelerating towards the observer.

D
is

p
la

c
e

m
e

n
t 

(m
)

Time (s)

steepening curve,  
velocity increasing
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Displacement-Time Graphs

1) He took 10 s to accelerate to full speed  
and he travelled 100 m in that time.

2) He travelled at a constant velocity for the next  
10 s and he travelled 200 m in that time.

3) He took 5 s to decelerate (by braking)  
and stop.  He travelled 50 m in that time.

4) He remained stationary for 5 s at a 
displacement of 350 m from his starting point.

5) He accelerated in the opposite direction for 5 s.

1) The value of the constant velocity he travelled at between 10 and 20 seconds.

velocity = gradient = 
change in time

change in displacement
 = 20 10

300 100
–
–  = 10

200  = 20 ms–1

2) His average velocity for the whole journey — found by dividing his overall change
 in displacement by the journey time.

 average velocity  = 
–

total time taken
final displacement initial displacement

 

= 35
250 0–  = 35

250  = 7.142... = 7.1 ms–1 (to 2 s.f.)

3) His average speed for the whole journey — found by dividing his total distance 
travelled by the journey time.
The total distance is the distance travelled in the positive direction (350 m)  
plus the distance travelled in the negative direction (100 m).

 average speed = 
total time taken

total distance travelled = 35
350 100+  = = 12.85... = 13 ms–1 (to 2 s.f.)

EXAMPLE:  The displacement-time graph below shows a motorcyclist accelerating to a 
constant speed, braking and then riding a short distance in the opposite direction.

Time (s)5 10 15 20 25

200

100

150

50

0
30 35

250

300

350

400

D
is

p
la

c
e
m

e
n
t 
(m

)

Displacements — pretty lousy work experience if you ask me...
1) The displacement-time graph below shows the displacement of a racing car from the start line. 

a) Is the car accelerating or decelerating  
 between 1 s and 2 s? 
b) Describe the motion of the  
 car between 3 s and 6 s. 
c) What is the velocity of the  
 car between 8 s and 10 s? 
d) What is the car’s average velocity  
 for the entire journey? 
e)  What is the car’s average speed  

for the entire journey?

You can read the following directly off the graph:

You can work out three more details of the motorcyclist’s journey:

2 4 6 8 10

160

80

120

40

0
12 14

200

D
is

p
la

c
e

m
e

n
t 

(m
)

0 1 3 5 7 9 11 13

Time (s)
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Velocity-Time Graphs

You can Draw Graphs to Show the Velocity of an Object

You can also draw graphs that show the velocity of an object moving in one dimension.

You can use a velocity-time graph to calculate two things:
1) The distance the object has moved.
2) The acceleration.

The shape made by the area between 1 and 5 seconds  
can be divided into a rectangle, a trapezium and a triangle.  
So the total area = area of rectangle +  
area of trapezium + area of triangle.
Area of rectangle  = width × height = 1 × 6 = 6 m
Area of trapezium  = ½ × (left side + right side) × width

= ½ × (6 + 4) × 2 = 5 × 2 
= 10 m

Area of triangle = ½ × width × height = ½ × 1 × 4 = 2 m
So distance travelled = 6 + 10 + 2 = 18 m

EXAMPLE: What is the distance travelled between 1 second and 5 seconds?
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y
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m
s
  

)
–
1

The Area Under the Line is the Distance Travelled

To find the distance an object travels between two times:
1) Draw vertical lines up from the horizontal axis at the two times.
2) Work out the area of the shape formed by these lines.
3) When you work out the area, you’re multiplying time 

(the horizontal length) by average speed (the average 
vertical length), so the result is a distance.

4) You can work out the area in two ways:
•	 Divide the shape into trapeziums, triangles, and/or

rectangles and add up the area of each one. area

•	 Or work out how many metres each grid square on the graph is worth, then multiply 
by the number of squares under the line.  For squares cut by a diagonal part of 
the line, you’ll need to estimate the fraction of the square that’s under the line.

Time (s)

2 4
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0
1 3
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)
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Velocity-Time Graphs

A steepening curve — my v-t graph when I find a spider in my room...
1)              2) 

 Time (s)10 20

2

0
5 15

4

6

8

10

12

25 30

Velocity (ms  )
–1

0

A
B

C

  Time (s)2 4

5

0
1 3

10

15

20

25

30

5 6

Velocity (ms  )
–1

0

A

C
B

a) Calculate the acceleration shown in sections A, B and C on each graph.
b)  Calculate the total distance travelled shown by each graph.

The Gradient of the Line is the Acceleration

The acceleration of an object travelling in one dimension (see page 6) is given by:

A Curved Line means the Acceleration is Changing

If the line is curved, the acceleration is not constant.  
A steepening curve means the acceleration is increasing.
A flattening curve means the acceleration is decreasing.

Acceleration (in ms–2) = 
(in s)
(inms )

time taken
change in velocity –2

This is just the gradient of a velocity-time graph.  This means that a velocity-time graph of 
an object’s motion has a negative gradient when an object is slowing down (decelerating).

Acceleration  = 20 10
4 3

–
–

= 10
1  

= 0.1 ms–2

EXAMPLE: What is the acceleration between 10 and 20 seconds?

Time (s)10 20

1

0
5 15
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4
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)
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0

Acceleration  = 15 5
10 15

–
–

= 10
5–

= –0.5 ms–2

EXAMPLE: What is the acceleration between 5 and 15 seconds?

10 205 15
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e
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Time (s)

5

0
0
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Adding and Resolving Forces

Unbalanced forces — a police officer and a tank on a seesaw...
1) Work out the resultant forces on these objects.  Are the forces are balanced or unbalanced? 

5 N 8 N
a) 700 N 200 N

b)

2 N

2 N
c)

2) The engine of a plane provides a force of 920 N at an angle of 12° above the horizontal.   
What is the horizontal component of the force?

3) A kite surfer is pulled along a beach by a force of 150 N at an angle of 78° above 
the horizontal.  What is the vertical component of the force?

The Resultant Force is the Sum of All the Forces

1) Force is a vector, just like displacement or velocity.
2) When more than one force acts on a body, you can add them

together in just the same way as you add displacements or velocities.
3) You find the resultant force by putting the arrows “tip-to-tail”.
4) If the resultant force is zero, the forces are balanced.
5) If there’s a resultant force, the forces are unbalanced and there’s a net force on the object.

5 N

4 N

3 N

5 N
4 N

3 N

Resultant force = 0 N
Balanced

Resultant force = 0 N
Balanced

70 N 70 N

70 N

70 N

6 N 10 N

10 N

6 N

Unbalanced

4 NResultant force:

EXAMPLE:  Find the resultant force on each object below and 
decide if the forces are balanced or unbalanced.

You can Resolve Forces just like Other Vectors

The force F has exactly the same effect as the 
horizontal and vertical forces, FH and FV.  
Use these formulas when resolving forces:

cosF FH θ =  and sinF FV θ =

F

F
H

F
V

�

1) Forces can be in any direction, so they’re not always at right angles to each other.  
This is sometimes a bit awkward for calculations.

2) To make an ‘awkward’ force easier to deal with, you can think of it as two separate forces, 
acting at right angles to each other.  Forces are vectors, so you just use the method on p.5.
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Forces and Acceleration

Newton’s Second Law — Acceleration is Proportional to Force

1) According to Newton’s First Law, applying a resultant force to an object makes it accelerate.
2) Newton’s Second Law says that:

The acceleration is directly proportional to the resultant force.

3) This means that if you double the force applied to an object, you double its acceleration.
4) You can write down this relationship as the equation:

resultant force (in newtons, N) = mass of object (in kg) × acceleration of object (in ms–2)

 Or, in symbols:

F = m × a

Friction forces Driving forces

1500 N 1500 N

Resultant force = 1500 – 1500 = 0 N 
No acceleration, so velocity doesn’t change. 

Friction forces Driving forces

750 N 1200 N

Resultant force = 1200 – 750 = 450 N 
Car accelerates, so velocity increases.

Friction forces Driving forces

320 N 110 N

Resultant force = 110 – 320 = –210 N 
Bike decelerates, so velocity decreases.

EXAMPLE: How does the velocity change in each of these examples?

Newton’s First Law — a Force is Needed to Change Velocity

1) It’s difficult to explain exactly what a “force” is, so instead we talk about what forces do. 
2) Forces stretch, squash or twist things, but most importantly 

forces make things go faster (or slower or change direction).
3) Newton’s First Law says that:

The velocity of an object will not change unless a resultant force acts on it.

4) This means an object will stay still or move in a straight line at a constant speed, 
unless there’s a resultant force acting on it.

5) A resultant force is when the forces acting on an object are unbalanced (see p.12) — e.g. 
when a car accelerates, the driving force from the engine is greater than the friction forces.

6) If there’s a resultant force, the object will accelerate in the direction of the resultant force.
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Forces and Acceleration

v = 15 ms–1, u = 0 ms–1, t = 25 s

a = t
v u– , so a = 25

15 0–  = 0.60 ms–2

Then F = m × a = 1250 × 0.60 = 750 N

EXAMPLE:  A car of mass 1250 kg accelerates uniformly from rest to 
15 ms–1 in 25 s.  What is the resultant force accelerating it?

Newton’s Third Law — Forces have an Equal, Opposite Reaction

Newton’s Third Law says that: 

Each force has an equal and opposite reaction force.

This means that if object A exerts a force on object B, then object B must exert an equal but 
opposite force on object A.
For example — when you are standing up, you exert a force (your weight) on the floor 
and the floor pushes back with a force of the same size in the opposite direction.  
If it didn’t you’d just fall through the floor...

v = 0 ms–1, u = 2.5 ms–1, t = 2.3 s

Again a = t
v u–  = .

.
2 3

0 2 5–  = –1.086... ms–2

The acceleration is negative because the cyclist is slowing down — the acceleration 
and the resultant force are in the opposite direction to the cyclist’s motion. 

Then m = a
F = . ...1 086

150
–

–  = 138 = 140 kg (to 2 s.f.)

(This answer is rounded to 2 s.f. to match the data in the question — see page 1.)

EXAMPLE:  A cyclist applies a braking force of 150 N to come to a stop from a speed 
of 2.5 ms–1 in 2.3 s.  What is the total mass of the cyclist and their bike?

Newton was awful at times tables — he was only interested in fours...
1) A car pulls a caravan of mass 840 kg.  If the car accelerates at 0.50 ms–2, 

what force will the caravan experience?
2) An apple of mass 0.120 kg falls with an acceleration of 9.81 ms–2.  

What is the gravitational force pulling it down (its weight)?
3) An arrow of mass 0.5 kg is shot from a bow.  If the force from the bow-string is 250 N, 

what is the initial acceleration of the arrow?
4) What is the mass of a ship if a force of 55 000 N produces an acceleration of 0.275 ms–2?
5) A train of mass 15 000 kg accelerates from rest for 25 s.  If the total force 

from the engines is 8600 N, what is the train’s final velocity?

Here are some Examples of Newton’s Second Law



15

Section 2 — energy

1864_HS_MainHead

Section 2 — energy

Kinetic Energy

Moving Things Have Kinetic Energy

Energy is a curious thing.  You can’t pick it up and look at it.
One thing’s for certain though — if you’re moving then you have energy.
This movement energy is more properly known as kinetic energy, 
and there’s a formula for working it out:

If a body of mass m (in kilograms) is moving with speed v (in metres per second) 
then its kinetic energy (in joules) is given by:

kinetic energy = ½ × mass × speed2

Or, in symbols: Ek = ½ × m × v2

Have a look at the following examples, and then try the questions after them.

Ek  = ½ × m × v2, so Ek = ½ × 1000 × 202 
= ½ × 1000 × 400 = 200 000 = 2 × 105 J

EXAMPLE:  A car of mass 1000 kg is travelling with a speed of 20 ms–1.  
What is its kinetic energy?

Kinetic energy — what you need lots of when you’re late for the bus...
1) An arrow of mass 0.125 kg is travelling at a speed of 72.0 ms–1.  What is its kinetic energy?
2) A ship has kinetic energy equal to 5.4 × 107 J when moving at 15 ms–1.  What is its mass?
3) A snail of mass 57 g has a kinetic energy of 1.0 × 10–6 J.  What is its speed?

m = 15 g = 0.015 kg
From the previous example: 2 × Ek = m × v2

Dividing both sides by m gives m
E2× k  = v2, 

then taking square roots of both sides gives m
E2× k  = v, 

so v  = m
E2× k  = .0 015

2 1200×  = 400 ms–1

EXAMPLE:  A bullet has kinetic energy equal to 1200 J.  
If its mass is 15 g, what is its speed?

m = 0.015 kg

Ek = 1200 J

Ek = ½ × m × v2

Multiplying both sides by 2 gives 2 × Ek = m × v2, 

then dividing both sides by v2 gives 
v
E2× k

2  = m, 

so m = 
v
E2× k

2  = . .
.

2 5 2 5
2 0 75

×
×  = .

.
6 25
1 5  = 0.24 kg

EXAMPLE:  A ball has a speed of 2.5 ms–1 and has kinetic energy 
equal to 0.75 J.  What is the mass of the ball?

2.5 ms–1

Ek = 0.75 J
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Liven up your roasts — pour on some graveytational potential energy...
1) How much more gravitational potential energy does a 750 kg car 

have at the top of a 350 m high hill than at the bottom?
2) A crate is raised through 7.00 metres and gains 1715 J of gravitational 

potential energy.  What is the mass of the crate?
3) A 65.0 kilogram hiker gains 24 700 joules of gravitational potential energy 

when climbing a small hill.  How high have they climbed?

Gravitational Potential Energy Depends on Height and Mass

When an object falls, its speed increases.  As its speed increases, so does its kinetic energy.
Where does it get this energy from?
Answer — from the gravitational potential energy it had before it fell:

If a body of mass m (in kilograms) is raised through a height h (in metres), 
the gravitational potential energy (in joules) it gains is given by:
gravitational potential energy = mass × gravitational field strength × height

So, in symbols it reads: Ep = m × g × h

The gravitational field strength, g, is the ratio of an object’s 
weight to its mass (in newtons per kilogram, Nkg–1).  
At the surface of the Earth, g has an approximate value of 9.81 Nkg–1.

Ep = m × g × h, so Ep = 80.0 × 9.81 × 45.0 = 35 316 = 35 300 J (to 3 s.f.)

EXAMPLE:  An 80.0 kilogram person in a lift is raised 45.0 metres.  
What is the increase in the person’s gravitational potential energy?

Ep = m × g × h.  Dividing both sides by m and g gives m g
E
×
p  = h,

so h = m g
E
×
p  = .725 9 81

29 400
×  = 4.1337... = 4.13 m (to 3 s.f.) 

EXAMPLE:  725 kilograms of bricks are given 29 400 joules of gravitational 
potential energy.  Through what height have they been raised?

Ep = 29 400 J

m = 725 kg

Ep = m × g × h.  Dividing both sides by g and h gives 
g h
E
×
p  = m, 

so m = 
g h
E
×
p  = . .

.
9 81 15 0

50 0
×  = 0.3397... = 0.340 kg (to 3 s.f.)

EXAMPLE:  A mass raised 15.0 metres gains gravitational potential energy 
equal to 50.0 joules.  What is that mass?

Ep = 50.0 J

h = 15.0 m
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The Conservation of Energy Applies to Falling Bodies

This can be very useful in solving problems.   
Read through the examples and then have a go at the questions afterwards. 
(In all the questions, you can ignore air resistance.)

The principle of conservation of energy states that:

“Energy cannot be created or destroyed — it can only be converted into other forms”

...for a falling object:

kinetic energy gained (in joules) = gravitational potential energy lost (in joules)

...and for an object thrown or catapulted upwards:

gravitational potential energy gained (in joules) = kinetic energy lost (in joules)

So as long as you ignore air resistance...

Ep lost = m × g × h = 0.165 × 9.81 × 2.00 = 3.2373 J
Therefore Ek gained = 3.2373 J.  Ek = ½ × m × v2. 

Rearranging this gives v = m
E2× k , so v  = .

.
0 165

2 3 2373×  = 6.264... 

= 6.26 ms–1 (to 3 s.f.)

EXAMPLE:  An apple of mass 0.165 kilograms falls 2.00 metres from a tree.  
What speed does it hit the ground at?

m = 0.165 kg

h = 2.00 m

Today I’m practising conservation of energy — I’m staying in bed all day...
1) A gymnast jumps vertically upwards from a trampoline with 2850 J of kinetic energy.   

They climb to a height of 5.10 m.  What is the gymnast’s mass? 
2) A book of mass 0.475 kilograms falls off a table top 92.0 centimetres from the floor.   

What speed is it travelling at when it hits the floor?
3) A bullet of mass 0.015 kilograms is fired upwards at 420 ms–1.  What height does it reach?

m = 225 g = 0.225 kg
Ek lost = ½ × m × v2 = ½ × 0.225 × 10.02 = 11.25 J
Therefore, Ep gained = 11.25 J.  Ep = m × g × h.

Rearranging this gives h = m g
E
×
p , so h  = . .

.
0 225 9 81

11 25
×  

= 5.096... = 5.10 m (to 3 s.f.)

EXAMPLE:  A model clown of mass 225 grams is fired straight upwards from 
a cannon at 10.0 metres per second.  How high does it get?

m = 0.225 kg
v = 10.0 ms–1

h = ?
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Work

Work — the Amount of Energy Transferred by a Force

When you move an object by applying a force to it, you are doing work 
(generally against another force) and transferring energy.  For example:
1) Lifting up a box — you are doing work against gravity.  

The energy is transferred to gravitational potential energy.
2) Pushing a wheely chair across a room — you are doing work against friction.  

The energy is transferred to heat and kinetic energy.
3) Stretching a spring — you are doing work against the stiffness of the spring.  

The energy is transferred to elastic potential energy stored in the spring.
The amount of energy (in joules) that a force transfers is called the work done.  It’s given by:

work done by a force
(in joules)

  =  size of force 
(in newtons)

  ×  distance the object moves in the direction of 
the force while the force is acting (in metres)

Or, in symbols: W = F × s

W = F × s, so W = 5.0 × 3.0 = 15 J

EXAMPLE:  A 5.0 newton force pushes a box 3.0 metres in the same 
direction as the force.  What is the work done by the force?

Work is F times s, what a way to make a living...
1) An upwards force of 25 newtons lifts an object 44 metres.  What is the work done?
2) A boy pulls a toy cart 2.5 m along the ground.  He applies a force of 17 N  

at an angle of 35° to the horizontal.  How much work does he do?

The Force isn’t Always in the Same Direction as the Movement

Sometimes the force acts in a different direction 
to the object’s movement.  
For example — when you pull on a sledge, the force acts 
diagonally along the rope but the sledge only moves horizontally.
So it’s only the horizontal part of the force that is doing any work.
You need to use some trigonometry to find the work done:

Use trigonometry to find the part of the force that  
acts in the direction of travel (i.e. north).
North-east = 045°, so F cosθ  = 25 × cos45° = 17.677... N
So the work done is W = F cosθ  × s = 17.677... × 15 = 265.165... = 270 J (to 2 s.f.)

EXAMPLE:  A 25 newton force to the north-east pushes an object 
15 metres in a northerly direction.  What is the work done?

45°

N NE

25 N

W = F cos q × s

direction of force, 
F, on sledge

horizontal force = F cosθ 

direction 
of motion

angle, θ 

(See page 12 for more about resolving forces.)



19

Section 2 — energy

Work

Work Done = Increase in Gravitational and Kinetic Energy

If a force does work on an object, a few things can happen.  For example:

Work done?  No, you need to answer this question first...
1) A constant 125 N force lifts a 5.75 kg rocket vertically upwards.  When the rocket reaches a 

height of 2.50 m the force is removed, but the rocket continues to move upwards.  Calculate:  
a) the work done by the force.  
b) the gain in gravitational potential energy.  
c) the gain in kinetic energy. 
d) the upwards speed of the rocket immediately after the force is removed.

The work done can go entirely into the kinetic energy of the object:

Work done = increase in kinetic energy, so:

W = F × s = ½ × m × v2, so v = m
F s2× ×  

v  = .
.2 3 0

5 7 12× ×  = 6.752... = 6.8 ms–1 (to 2 s.f.)

EXAMPLE:  The same cheese (of mass 3.0 kg) is pushed horizontally along a 
frictionless surface with a force of 5.7 N over a distance of 12 m. 
What is its final speed, assuming it was initially at rest?

F = 5.7 N

s = 12 m

m = 3.0 kg

The work done can go entirely into the gravitational potential energy of the object:

Work done = increase in gravitational potential energy, so:

W = m × g × h, and so h = m g
W
×

h = . .3 0 9 81
74
×  = 2.514... = 2.5 m (to 2 s.f.)

EXAMPLE:  A force does 74 J of work lifting a 3.0 kg cheese 
straight up.  How high is the cheese lifted?

W = m × g × h

The work done can go into increasing both the kinetic and the gravitational energy:

Work done = increase in Ek + increase in Ep , so:
F × s  = (½ × m × v2) + (m × g × h)

= (½ × 3.0 × 122) + (3.0 × 9.81 × 19.0)
=  775.17 = 780 J (to 2 s.f.)

EXAMPLE:  The same cheese is fired diagonally upwards from a catapult.  At its 
highest point it has climbed 19 m and is moving horizontally at 12 ms–1.
How much work was done on the cheese?

h = 19 m

v = 12 ms–1
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Power

Power — the Work Done Every Second

In mechanical situations, whenever energy is converted, work is being done.
For example, when an object is falling, the force of gravity is doing work on 
that object equal to the increase in kinetic energy (ignoring air resistance).
The rate at which this work is being done is called the power.
You can calculate it using:

power (in watts) = work done (in joules) ÷ time taken (in seconds)

Or, in symbols: P = t
W

Power is measured in watts.  
A watt is equivalent to one joule of work done per second.

P = W ÷ t = 10 ÷ 2 = 5 W

EXAMPLE: If 10 joules of work are done in 2 seconds, what is the power?

First you need to find the work done (see page 18):
W = F × s = 125 × 5.2 = 650 J
Then use W to find the power: 
P = W ÷ t = 650 ÷ 2.6 = 250 W

EXAMPLE:  A force of 125 newtons pushes a crate 5.2 metres in 2.6 seconds.  
What is the power?  (The motion is in the same direction as the force.)

P = W ÷ t  
Multiplying both sides by t gives: P × t = W
Then dividing both sides by P gives: t = W ÷ P

So, t = W ÷ P = 
. ×
.

3 2 10
4 8 10×

3

5
 = 150 s

EXAMPLE:  For how long must a 3.2 kilowatt (3.2 × 103 watt) engine run 
to do 480 kilojoules (4.8 × 105 joules) of work?

The power of love ain’t that special — it’s just a lot of work over time...
1) What is the power output of a motor if it does 250 joules of work in 4.0 seconds?
2) If a lift mechanism works at 14 kilowatts, how long does it take to do 91 kilojoules of work?
3) An engine provides a force of 276 N to push an object 1.25 km in 2.5 minutes.   

What power is the engine working at?
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Mooving forces with a lot of power — a stampeding herd of cows...
1) What is the power delivered by a train engine if its driving force of 1.80 × 105 newtons 

produces a constant speed of 40.0 metres per second?
2) A skydiver is falling at a constant velocity of 45 metres per second.   

Gravity is doing work on her at a rate of 31 500 joules per second.  What is her weight?
3) A car is travelling at steady speed.  Its engine delivers a power of  

5.20 × 104 watts to provide a force of 1650 newtons.   
What speed is the car travelling at (in metres per second)?

Power

Power is also Force Multiplied By Speed

There’s a useful equation you can derive for the work done by a force every second on an 
object moving at a constant speed.  Follow through the working in the example below:

driving force
= 2100 N

drag force
= 2100 N

The car is moving at a steady speed.  This means the forces on it are balanced,  
so the driving force must be equal to the drag force. 

The power of the engine is given by P = W ÷ t.

W = F × s, so we can substitute for the work done, giving P = t
F s× .

Now, t
F s×  is the same as F × t

s , so P = F × t
s .

Finally we use the fact that t
s  = 

time taken
distance travelled  = the speed, v.

So, P = F × t
s  = F × v

power (in watts) = force (in newtons) × speed (in metres per second)

For our example, P = 2100 × 32 = 67 200 = 67 000 W (or 67 kW) (to 2 s.f.)

(This answer is rounded to 2 s.f. to match the data in the question — see page 1.)

EXAMPLE:  What power is a car engine working at if it produces a driving force of 
2100 newtons when moving at a steady speed of 32 metres per second?

IMPORTANT: 
The formula P = F × v is only true when the object is moving 
at a constant speed in the same direction as the force.
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Efficiency

1) For most mechanical systems you put in energy in one form
and the system gives out energy in another.

2) However, some energy is always converted into forms that aren’t useful.
3) For example, an electric motor converts electrical energy into heat and 

sound as well as useful kinetic energy.
4) You can measure the efficiency of a system by the percentage 

of total energy put in that is converted to useful forms.

How Much of What You Put In Do You Get Out?

Efficiency = 
Total energy in

Useful energy out
 × 100%

Efficiency – getting on with these questions instead of messing about...
1) A motor uses 375 joules of electrical energy in lifting a 12.9 kilogram mass through 

2.50 metres.  What is its efficiency?  
2) It takes 1.4 megajoules (1.4 × 106 joules) of chemical energy from the petrol in a car engine 

to accelerate a 560 kilogram car from rest to 25 metres per second on a flat road.  
a) What is the gain in kinetic energy? 
b) What is the efficiency of the car?

pull
98 N

4.5 kg

5.0 m

So, efficiency  = 
Total energy in

Useful energy out
 × 100% 

= .
490

220 725 × 100% = 45.045... = 45% (to 2 s.f.)

EXAMPLE:  A pirate uses a rope to pull a box of mass 4.5 kg vertically 
upwards through 5.0 m of water.  He pulls with a force of 98 N. 
What is the efficiency of this system?

The energy the pirate puts in is 
the work he does pulling the rope.
The useful energy out is the gravitational 
potential energy gained by the box.
Some energy is converted to heat and 
sound by friction as the box is dragged 
through the water.
Total energy in = work done  = F × s 

= 98 × 5.0  
= 490 J

Useful energy out  = gravitational potential  
 energy gained 
= m × g × h 
= 4.5 × 9.81 × 5.0 
= 220.725 J
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Forces and Springs

Hooke’s Law — Extension is Directly Proportional to Force

1) When you apply a force to an object you can cause it to stretch and deform (change shape).
2) Elastic objects are objects that return to their original shape 

after this deforming force is removed, e.g. springs.  
3) When a spring is supported at the top and a weight 

is attached to the bottom, it stretches.
4) The extension, ∆ l, of a spring is directly proportional 

to the force applied, F.  This is Hooke’s Law.  
5) This relationship is also true for many  

other elastic objects like metal wires.

The spring constant, k, depends on the stiffness of the material that you are stretching.
It’s measured in newtons per metre (Nm–1).

force 
(in newtons, N)

 = spring constant  
(in newtons per metre, Nm–1)

 × extension 
(in metres, m)

F = k × ∆ l
∆ l = 12.3 cm = 0.123 m
So, F  = 65.0 × 0.123 

= 7.995  
= 8.00 N (to 3 s.f.)

EXAMPLE:  A force is applied to a spring with a spring constant of 65.0 Nm–1.
The spring extends by 12.3 cm.  What size is the force?

Dl = 12.3 cm

k = 65.0 Nm–1

F = k × ∆ l, so ∆ l = 
k
F

You need to work out the force from the given mass:
F  = weight of flour = m × g 

= 7.10 × 9.81 = 69.651 N

So, ∆ l  = .
.

85 0
69 651 

= 0.8194... 
= 0.819 m (to 3 s.f.)

EXAMPLE:  A sack of flour of mass 7.10 kg is attached to the bottom of a 
vertical spring.  The spring constant is 85.0 Nm–1 and the top of 
the spring is supported.  How much does the spring extend by?

m = 7.10 kg

Flour

k = 85.0 Nm–1

F = k × Dl

F

Original
length,

l

Extension, �l

Force, F

Force, F
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Forces and Springs

Spring into action — force yourself to learn all this...
1) A force applied to a spring with spring constant 64.1 Nm–1 causes it to extend by 24.5 cm.  

What was the force applied to the spring?
2) A pile of bricks is hung off a spring with spring constant 84.0 Nm–1.  

The bricks apply a force of 378 N on the spring.  How much does the spring extend by?
3) The mass limit for each bag taken on a flight with Cheapskate Airways is 9.0 kg.   

The mass of each bag is measured by attaching the bag to a spring.
 a) A bag of mass 7.4 kg extends the spring by 8.4 cm.  What is the spring constant?
 b)  The first bag is removed and another bag is attached to the spring.   

The spring extends by 9.5 cm.  Can this bag be taken on the flight?
4) a)  What is meant by the limit of proportionality?
 b)   Why might a spring not return to its original length after 

having been stretched and then released?

1) The graph shows force against extension for a spring.
2) For small forces, force and extension are proportional.  

So the first part of the graph shows a straight-line 
relationship between force and extension.

3) There is a maximum force that the spring can 
take and still extend proportionally.  This is 
known as the limit of proportionality and is 
shown on the graph at the point marked P.

4) The point marked E is the elastic limit.  
If you increase the force past this point, the spring 
will be permanently stretched.  When the force is 
removed, the spring will be longer than at the start.

There’s a limit to the amount of force you can apply to an object
for the extension to keep on increasing proportionally.

Hooke’s Law Stops Working when the Force is Great Enough

5) Beyond the elastic limit, we say that the spring deforms plastically. 

F
o
rc

e
 (

N
)

Extension (m)

P

E

Force is 
proportional to 

extension.

Past point 
P, force is 
no longer 

proportional 
to extension.

1) When a material is stretched, work has to 
be done in stretching the material.

2) If a deformation is elastic, all the work done is stored as elastic strain 
energy (also called elastic potential energy) in the material.

3) When the stretching force is removed, this stored 
energy is transferred to other forms — e.g. when an 
elastic band is stretched and then fired across a room, 
elastic strain energy is transferred to kinetic energy.

4) If a deformation is plastic, work is done to separate atoms, and 
energy is not stored as strain energy (it’s mostly lost as heat).

Work Done can be Stored as Elastic Strain Energy
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Section 4 — electricity

current (in amperes, A) = 
, Cthe passing the point (in coulombs )amount of charge

, sthe for the charge to pass (in seconds )time it takes

The electric current at a point in the wire is defined as:

Electric Current — the Rate of Flow of Charge Around a Circuit

1) In a circuit, negatively-charged electrons flow from
the negative end of a battery to the positive end.

2) This flow of charge is called an electric current.  
3) However, you can also think of current as a flow of 

positive charge in the other direction, from positive 
to negative.  This is called conventional current.

–+

electron flow

conventional current

I = t
QOr, in symbols:

I = t
Q , so I = .45 0

585  = 13.0 A

EXAMPLE:  585 C of charge passes a point in a circuit in 
45.0 s.  What is the current at this point?

Current and Potential Difference

Physicists love camping trips — they get to study po-tent-ial difference...
1) How long does it take to transfer 12 C of charge if the average current is 3.0 A?
2) The potential difference across a bulb is 1.5 V.   

How much work is done to pass 9.2 C through the bulb?
3) A motor runs for 275 seconds and does 9540 J of work.   

If the current in the circuit is 3.80 A, what is the potential difference across the motor?

Potential Difference (Voltage) — the Energy Per Unit Charge

V = Q
W , so V = .

.
2 70
10 8  = 4.00 V

EXAMPLE:  A component does 10.8 J of work for every 2.70 C that passes through it.  
What is the potential difference across the component?

1) In all circuits, energy is transferred from the power supply to the components.
2) The power supply does work on the charged particles, 

which carry this energy around the circuit.
3) The potential difference across a component is defined as the work done 

(or energy transferred) per coulomb of charge moved through the component.

Potential difference across component (in volts, V) = 
(
( J

moved in coulombs, C)
in joules, )

charge
work done

In symbols: V = Q
W



26

Section 4 — electricity

1864_HS_MainHeadCurrent in Electric Circuits

Charge is Always Conserved in Circuits

1) As charge flows through a circuit, it doesn’t get used up or lost.
2) You can easily build a circuit in which the electric 

current can be split between two wires — two 
lamps connected in parallel is a good example.

3) Because charge is conserved in circuits, whatever charge 
flows into a junction will flow out again.

the sum of the currents going into the junction = the sum of the currents going out

+ –

This is Kirchhoff’s first law.  It means that the current is the same everywhere 
in a series circuit, and is shared between the branches of a parallel circuit.

Conserve charge — make nature reserves for circuit boards...
1) What is the value of I1?       2) What is the value of I2?

 

I1

0.2 A0.5 A

0.05 A
        

I2

0.4 A

1.3 A0.3 A

5) N.B. — current arrows on circuit diagrams normally show 
the direction of flow of conventional current (see p.25).

Sum of currents in = sum of currents out
1.0 = 0.5 + 0.3 + I1

1.0 = 0.8 + I1

I1 = 1.0 – 0.8
I1 = 0.2 A

EXAMPLE: Use Kirchoff’s first law to find the unknown current I1.

0.5 A

0.3 A1.0 A

I1

Looking at the junction immediately after I1:
I1 = 1.2 + 0.7
I1 = 1.9 A

And looking at the junction immediately before I1:
1.5 + I2 = 1.9
I2 = 1.9 – 1.5
I2 = 0.4 A

EXAMPLE: Calculate the missing currents, I1 and I2, in this circuit.

Current flows 
this way

4) Since current is rate of flow of charge, it follows that whatever current 
flows into a junction is the same as the current flowing out of it.

1.5 A

0.7 A

1.2 A

I2

I1
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Potential Difference in Electric Circuits

Energy is Always Conserved in Circuits

1) Energy is given to charged particles by the power supply and taken off them by the 
components in the circuit.  

2) Since energy is conserved, the amount of energy one coulomb of charge loses when 
going around the circuit must be equal to the energy it’s given by the power supply. 

3) This must be true regardless of the route the charge takes around the circuit.  
This means that:

This Kirchhoff’s second law.  It means that:
•	 In a series circuit, the potential difference of the power supply is split 

between all the components.
•	 In a parallel circuit, each loop has the same potential difference as the power supply.

For any closed loop in a circuit, the sum of the potential differences across 
the components equals the potential difference of the power supply. 

This page is potentially tricky — so have a read of it all again...
1) For the circuit on the right, calculate: 

 a) the voltage across the motor, VM.
 b) the voltage across the loudspeaker, VS.

2) A third loop containing two filament lamps  
is added to the circuit in parallel with the first two loops. 
What is the sum of the voltages  
of the two filament lamps? 

EXAMPLE:  Use Kirchoff’s second law to calculate the 
potential differences across the resistor, VR, and 
the lamp, VL, in the circuit shown on the right.

V
R

6 V

2 V 2 V
V

L

2 V

V

6 V

2 V 2 V
V

2 V
R

L

p.d. of power supply =  sum of p.d.s of components in top loop
6 = 2 + VR

So VR = 6 – 2 = 4 V

First look at just the top loop:

V

6 V

2 V 2 V
V

2 V
R

L

p.d. of power supply = sum of p.d.s of components in outside loop
6 = 2 + VL + 2
So VL  = 6 – 2 – 2 = 2 V

Now look at just the outside loop:

12 V

3 V

2 V V

M

6 V
S

V
M
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Resistance

Resistance — The Ratio of Potential Difference to Current 

4) Components with a low resistance allow a large current to flow through them, 
while components with a high resistance allow only a small current.  

5) The resistance isn’t always constant though — it can take different values as the current 
and voltage change, or it can change with conditions like temperature and light level. 

1) If there’s a potential difference across a component a current will flow through it.  
2) Usually, as the potential difference is increased the current increases — this makes sense 

if you think of the potential difference as a kind of force pushing the charged particles.  
3) You can link current and potential difference by defining “resistance”:

Resistance of component (in ohms, W) = 
)A
V

(in amps,
(in volts, )

current passing through component
potential difference across component

Or, in symbols: 

Multiplying both sides by I gives: V = I × R

R = I
V   

R = I
V , so R = 

.1 0 10
12
× 3–  = 12 000 Ω , or 12 kΩ 

EXAMPLE:  If a potential difference of 12 V across a component causes a current 
of 1.0 mA to flow through it, what is the resistance of the component?

V = I × R, so V = 0.2 × 200 = 40 V

EXAMPLE:  What potential difference must be applied across a lamp with a 
resistance of 200 W in order for a current of 0.2 A to flow through it?

V = I × R.  Dividing both sides by R gives I = R
V ,

so I = .
850
6 3  = 0.007411... =  0.0074 A (or 7.4 mA) (to 2 s.f.)

EXAMPLE:  What current will flow through an 850 W resistor if 
a potential difference of 6.3 V is applied across it?

Ohm my, look at that — more questions to do...
1) If a current of 2.5 amps flows through a component with a resistance of 15 ohms,  

what is the potential difference across the component?
2) What current will flow through a 2500 W resistor if the voltage across it is 6.0 volts?
3) What is the resistance of a component if 1.5 volts drives a current of 0.024 amps through it?
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I-V Graphs

Ohm’s Law Says Potential Difference is Proportional to Current 
1) An I-V graph is a graph of current against potential 

difference for a component.  For any I-V graph, the resistance 
at a given point is the potential difference divided by the current (R =  I

V ).  
2) Provided the temperature is constant, the current through an 

ohmic component (e.g. a resistor) is directly proportional to the 
potential difference across it (V µ I).  This is called Ohm’s Law.

3) An ohmic component’s I-V graph is a straight line, with a gradient equal to 
1 ÷ the resistance of the component.  The resistance (and therefore the gradient) is constant.

I-Ve decided you need amp-le practice to keep your knowledge current...
1) State Ohm’s law.
2) Sketch I-V graphs for:   a) an ohmic resistor,   b) a filament lamp,   c) a diode.

I-V Graphs for Other Components Aren’t Straight Lines

The I-V graphs for other components don’t have constant gradients.  
This means the resistance changes with voltage. 

Filament 
Lamp

Diode1) As the p.d. across a 
filament lamp gets larger, 
the filament gets hotter and 
its resistance increases.

2) Diodes only let current 
flow in one direction.  The 
resistance of a diode is very 
high in the other direction.

•	 So for an ohmic component, doubling the 
potential difference doubles the current.

•	 Often external factors, such as temperature, will 
have a significant effect on resistance, so you need to 
remember that Ohm’s law is only true for components 
like resistors at constant temperature. 0

0
Potential difference / V

C
u

rr
e

n
t 

/
A

EXAMPLE:  Look at the I-V graph for a resistor on the right.  
What is its resistance when the potential difference 
across it is:   a) 10 V,   b) 5 V,   c) –5 V,   d) –10 V? 

V (V)

I (A)

-0.5

0.5

1

-1

-10 -5 5 10a)  R = I
V  = 1

10  = 10 Ω

c)  R = I
V  = .

–
0 5
5

–  = 10 Ω

b) R = I
V  = .0 5

5  = 10 Ω

d)  R = I
V  = 1

10
–

–  = 10 Ω

4) Sometimes you’ll see a graph with negative values for p.d. and current.  This just means the 
current is flowing the other way (so the terminals of the power supply have been switched).

Ω...

V (V)

I (A)

V (V)

I (A)
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Power in Circuits

Power — the Rate of Transfer of Energy

power (in watts, W) = 
(in seconds, s)
(in joules, J)

time taken
work done

1) Components in electrical circuits transfer the energy carried by electrons into other forms.
2) The work done each second (or the energy transferred each second)

is the power of a component:

Or, in symbols: P = t
W

The work done is equal to the potential difference across the component multiplied by the 
amount of charge that has flowed through it (W = V × Q) — see p.25.

Cancelling the t’s gives: 

Calculating Power from Current and Potential Difference

P = V × I 

power (in watts) = potential difference (in volts) × current (in amps)

P = t
W , so P = . ×

60
3 0 105

 = 5000 W (or 5 kW)

EXAMPLE:  A lift motor does 3.0 × 105 J of work in a single 
one-minute journey.  At what power is it working?

P = V × I, so P = 6 × 5.0 × 10–4 = 0.003 W (or 3 mW)

EXAMPLE:  If the potential difference across a component is 6 volts and the current 
through it is 0.50 milliamps (5.0 × 10–4 amps), at what rate is it doing work?

Knowledge is power — make sure you know these power equations...
1) What is the power output of a component if the current through it is 

0.12 amps when the potential difference across it is 6.5 volts?
2) An electric heater has an operating power of 45 W.   

a) What current passes through the heater when the potential difference across it is 14 volts?  
b) How much work does the heater do in 12 seconds?

So:     P = t
V Q×

The amount of charge that flows through a component is equal to the current 
through it multiplied by the time taken (Q = I × t) — see p.25 again.

So:     P = I
t

V t× ×

This is the same as the equation for mechanical power that you saw on page 20.
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Power in Circuits

You Can Combine the Equations for Power and Resistance

You can combine the last equation for the power of an electrical component, P = V × I, 
with the equation for resistance, R = I

V  (see p.28), to create two more useful equations.

power (in watts) =  [current (in amps)]2 × resistance (in ohms)

1) Substitute V = I × R into P = V × I  to get: P = I × R × I = I 2R

power (in watts) = 
potential difference

(in ohms)
[ (in volts)]

resistance

2

2) Or substitute I = R
V  into P = V × I  to get: P = V × R

V  = R
V2

Here are some examples — the key here is choosing the right equation to use.  If the question 
gives you the value of two variables and asks you to find a third, you should choose the 
equation that relates these three variables.  You might have to rearrange it before using it.

P = I 2R, so P = 0.22 × 100 = 4 W

EXAMPLE:  What is the power output of a component with 
resistance 100 W if the current through it is 0.2 A?

It increases by a factor of 4 — this is because the current is squared in the 
expression for the power (you can substitute some values of I and R in to check this).

EXAMPLE:  Resistors get hotter when a current flows through them.  
If you double the current through a resistor, what happens 
to the amount of heat energy produced every second?

P = R
V2

, so multiplying both sides by R gives P × R = V 2, and dividing by P gives:

R = P
V2

, so R = .6 5
122

 = 22.153... = 22 W (to 2 s.f.)

(This answer is rounded to 2 s.f. to match the data in the question — see page 1.)

EXAMPLE:  If a lamp has an operating power of 6.5 W and the potential 
difference across it is 12 V, what is its resistance?

Watts up with your watch, Dr Watson?  Dunno, but it sure is i²rksome...
1) What is the power output of a 2400 Ω  component if the current through it is 1.2 A?
2) A motor has a resistance of 100 W.  How much work does it do 

in 1 minute if it is connected to a 6 V power supply?
3) The current through a 6.0 W lamp is 0.50 A.  What is the resistance of the lamp?
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Waves

Section 5 — WaveS

Waves Transfer Energy Without Transferring Matter

1) Waves are oscillations that transfer energy — like water waves or electromagnetic waves.
2) Waves carry energy from one place to another without transferring matter.

Transverse waves are terrible singers — they always skip the chorus...
1) Sketch a graph of displacement against distance for five full wavelengths of a wave with 

amplitude 0.01 metres and wavelength 0.02 metres.
2) Sketch a graph of displacement against time for three complete oscillations of one part of a 

wave of amplitude 0.05 metres and time period 0.8 seconds.

You Can Show Wave Motion on a Graph

Displacement = how far a point on the wave has moved from its equilibrium position
Amplitude (A) = the largest possible displacement from the equilibrium position
Wavelength (l) = the length of one wave cycle, from crest to crest or trough to trough
Period (T) = the time taken for a whole cycle (vibration) to complete, or to pass a given point

A displacement-distance graph shows how far each 
part of the wave is displaced from its equilibrium 
position for different distances along the wave.

You can also consider just one point on a wave 
and plot how its displacement changes with 
time.  This is a displacement-time graph.

Transverse Waves Vibrate at 90° to the Direction of Travel

Transverse waves have vibrations at 90° to the direction of energy transfer and travel.
E.g. electromagnetic waves (like light) or shaking a Slinky® spring from side to side.

Vibrations from
side to side

Wave transfers energy
and travels this way

Longitudinal Waves Vibrate Along the Direction of Travel

Longitudinal waves vibrate in the same direction as the direction of energy transfer and travel.
They are made of alternate compressions and rarefactions of the medium.
E.g. sound waves or pushing on the end of a Slinky® spring.

�

�
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Distance along wave (m)
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(m
)

A

time (s)

Vibrations are in the same direction
as the wave is travelling

compression rarefaction

Wave transfers energy this way
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Frequency and the Wave Equation

Wave equation: lift arm + oscillate hand = pleasant non-vocal greeting...
1) A radio wave has a frequency of 6.25 × 105 Hz.

What is the time period of the radio wave?
2) A sound wave has a time period of 0.0012 s.  Find the frequency of the sound.
3) A wave along a spring has a frequency of 3.5 Hz and a wavelength of 1.4 m.   

What is the speed of the wave?
4) A wave has time period 7.1 s and is moving at speed 180 ms–1.

a) What is the frequency of the wave?  
b) What is the wavelength of the wave?

Frequency is the Number of Oscillations per Second

If a wave has a time period of 0.2 seconds, it takes 0.2 seconds for a point on the wave to 
complete one full oscillation.  So in one second the point will complete 5 full oscillations.
The number of oscillations that one point on a wave completes every second is called the 
frequency of the wave.  It has the symbol f and is measured in hertz (Hz).
So a wave with a time period of 0.2 seconds has a frequency of 5 hertz.

The equation for frequency is:

T = 
f
1 = 350

1  = 0.002857... = 0.0029 s (to 2 s.f.)

EXAMPLE:  A wave has a frequency of 350 Hz.  What is the 
period of oscillation of one point on that wave?

Frequency = 1
time period f = T

1or 

The Wave Equation Relates Speed, Frequency and Wavelength

For a wave of frequency f (in hertz), wavelength λ  (in metres) 
and wave speed v (in metres per second) the wave equation is:

v = f × λ  = 250 × 1.32 = 330 ms–1

EXAMPLE:  Sound is a longitudinal wave.  If a sound with a frequency of 250 Hz 
has a wavelength of 1.32 metres in air, what is the speed of sound in air?

v = f × λ , so f = vλ  = 
.
.

1 5 10
3 0 10

×
×

3

8
 = 200 000 Hz (or 200 kHz) 

EXAMPLE:  All electromagnetic waves travel at 3.0 × 108 ms–1 in a vacuum.  If a radio 
wave has a wavelength of 1.5 km in a vacuum, what is its frequency?  

speed = frequency × wavelength or v = f × λ 
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Superposition of Waves

+ =

Out of phase, 
destructive interference

If Waves are Out of Phase they Interfere Destructively

1) Two waves are exactly out of phase if the peaks of one 
wave line up with the troughs of the other (and vice versa).

2) If these waves are superposed, they interfere destructively.  
If the individual waves had the same amplitude 
originally, they will cancel each other out.

Constructive interference — getting woken up early by noisy builders...
1) What is meant by:   

a) superposition?    
b) constructive interference?    
c) destructive interference?

2) A wave with an amplitude of 0.67 mm is superposed with an identical wave with the same 
amplitude.  The waves are in phase.  What is the amplitude of the superposed wave?

3) Two waves, both of amplitude 19.1 m, are exactly out of phase.   
What is the amplitude of the single wave formed when they superpose?

4) A wave with an amplitude of 35 cm is in phase with a 41 cm amplitude wave.  The waves  
meet and constructive interference occurs.  What is the amplitude of the combined wave?

Superposition Happens When Two Waves Meet

1) If two waves meet (e.g. waves on a rope travelling  
in opposite directions), their displacements will  
briefly combine.  

2) They become one single wave, with a displacement 
equal to the displacement of each individual wave  
added together.  

3) This is called superposition.  
4) If two crests meet, the heights of the waves are added together and the crest 

height increases.  This is called constructive interference because the amplitude 
of the superposed waves is larger than the amplitude of the individual waves.

5) If the crest of one wave meets the trough of another wave, you subtract the 
trough depth from the crest height.  So if the crest height is the same as the trough 
depth they’ll cancel out.  This is called destructive interference because the 
amplitude of the superposed waves is smaller than that of the individual waves.

6) After combining, the waves then carry on as they were before.

BEFORE MEETING AFTER

+ =

In phase,  
constructive interference

If Waves are In Phase they Interfere Constructively

1) Two waves travelling in the same direction are in phase 
with each other when the peaks of one wave exactly 
line up with the peaks of the other, and the troughs of 
one wave exactly line up with the troughs of the other.  

2) If these waves are superposed, they interfere constructively.  
The combined amplitude of the final wave is equal to the sum of the individual waves.
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Reflection and Diffraction

Mind the gap between the train and the platform — you might diffract...
1) What is the law of reflection?
2) Sketch a diagram of a light wave being reflected at an angle by a mirror.  Label the incident 

and reflected waves, the normal, the angle of incidence and the angle of reflection.
3) A water wave travels through a gap about as wide as its wavelength.   

The gap is made slightly larger.  How will the amount of diffraction change?
4) What happens when light is shone at a slit about the same size as its wavelength?

Waves can be Reflected

1) When a wave hits a boundary between one medium and 
another, some (or nearly all) of the wave is reflected back.

4) The law of reflection says that:

angle of incidence (i ) = angle of reflection (r)

2) The angle of the incident (incoming) wave is 
called the angle of incidence, and the angle of the 
reflected wave is called the angle of reflection.

3) The angles of incidence and reflection are both 
measured from the normal — an imaginary 
line running perpendicular to the boundary.

pattern on screen

s
c
re

e
n

light

slit

Diffraction — Waves Spreading Out

1) Waves spread out (‘diffract’) at 
the edges when they pass through 
a gap or pass an object.

2) The amount of diffraction depends 
on the size of the gap relative to the 
wavelength of the wave.  The narrower 
the gap, or the longer the wavelength, 
the more the wave spreads out.

6) You get diffraction around  
the edges of obstacles too. 

7) The shadow is where the wave is blocked.  
The wider the obstacle compared to 
the wavelength, the less diffraction it 
causes, so the longer the shadow.

4) If light is shone at a narrow slit about the same width 
as the wavelength of the light, the light diffracts.  

5) The diffracted light forms a diffraction pattern of bright 
and dark fringes.  This pattern is caused by constructive 
and destructive interference of light waves (see p.34).

Gap much wider
than wavelength

Little diffraction

Gap a bit wider
than wavelength

Diffraction only
at edges

Gap the same
as wavelength

Maximum
diffraction

3) A narrow gap is one about the same size as the wavelength of the wave.  
So whether a gap counts as narrow or not depends on the wave.

‘shadow’

i
r

normal

incident wave

reflected wave
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Refraction

The refractive index of a medium, n, is the ratio of the speed of light in a vacuum to the 
speed of light in that medium.  Every transparent material has a refractive index and different 
materials have different refractive indices.

The Refractive Index is a Ratio of Speeds

This page has a high refractive index — it’s really slowed me down...
1) A wave hits a boundary between two media head on.  Describe what happens to the wave.
2) A wave hits a boundary between two media at an angle.  Describe what happens to the wave.
3) A light wave travelling in air hits a transparent material at an angle of 72° to the normal to the 

boundary.  The angle of refraction is 39°.  What is the refractive index of the material?
4) A light wave hits the surface of the water in a pond at 23° to the normal.  The refractive index 

of the pond water is 1.3.  What is the angle of refraction? 

When an electromagnetic wave enters a denser medium, it bends towards the normal.
When one enters a less dense medium, it bends away from the normal.

Waves can be Refracted
1) Reflection isn’t all that happens when a wave meets a boundary.  Usually, some of it is 

refracted too — it passes through the boundary and changes direction.
2) Waves travel at different speeds in different media.  

E.g. — electromagnetic waves, like light, usually travel slower in denser media.

If a wave hits a boundary ‘face on’, it 
slows down without changing direction. 

...while this bit carries 
on at the same speed 
until it meets the 
boundary.  The wave 
changes direction.

DenserLess Dense

But if the wave hits at an angle, 
this bit slows down first...

Less Dense Denser

When an incident ray travelling in air meets a boundary with another material, 
the angle of refraction of the ray, r, depends on the refractive index of the 
material and the angle of incidence, i.

You can Calculate the Refractive Index using Snell’s Law 

refractive index (n) = 
sin
sin

r
i

refracted ray

incident ray

glassair
some light
is reflected

normal

i

r

boundary

n = sin
sin

r
i  = sin

sin
35
65 = 1.580... = 1.6

EXAMPLE:  The angle of incidence of a beam of light on 
a glass block is 65°.  The angle of refraction is 
35°.  What is the refractive index of the block?

This is called Snell’s Law.

You can rearrange Snell’s Law to find an angle of refraction or incidence, e.g. r = sin–1(sinn
i ).
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Section 6 — atomS and radioactivity

Atomic Structure

Atoms are Made Up of Three Types of Particle

Radiocarbon dating — what physicists do on Valentine’s Day...
1) How many protons and neutrons are there in each of the following nuclei?  

a)  Am95
241         b)  Pu94

239         c)  Sr38
90         d)  Co27

60         e)  Ra88
226

2) What is an isotope of an element?

1) According to the nuclear model, the atom is made up of electrons, protons and neutrons.
2) The nucleus is at the centre of the atom.  It contains protons (which have a positive charge)

and neutrons (which have no charge), giving the nucleus an overall positive charge.  
Protons and neutrons are both known as nucleons. 

3) The nucleus is tiny but it makes up most of the mass of the atom.  The rest of the atom is 
mostly empty space, containing only the negative electrons which orbit around the nucleus.  

relative  
mass

relative  
charge

proton 1 +1
neutron 1 0
electron 0.0005 –1

neutronselectron

protonsHere’s the structure 
of a lithium atom:

Atomic Structure can be Represented Using Nuclide Notation

1) The proton number (or atomic number), Z, is the number of protons in an atom.
2) The nucleon number (or mass number), A, is the total number of protons and neutrons.
3) An element can be described by its proton and nucleon numbers:

For example, lithium has 4 neutrons and 
3 protons, so its symbol is Li3

7 .XA
Z

element  
symbolproton number

nucleon number

Isotopes are Different Forms of the Same Element

1) Isotopes are atoms with the same number of protons but a different number of neutrons.
2) This means they have the same proton number, but different nucleon numbers.
3) Many isotopes are unstable and give off radiation (see next page). 

EXAMPLE: Carbon-12 and carbon-14 are two isotopes of carbon.

Carbon-12, C6
12

6 neutrons, 
6 protons

Carbon-14, C6
14

8 neutrons,  
6 protons
(2 extra neutrons)

The radioactive decay 
of carbon-14 is used in 
radiocarbon dating to 
estimate the age of things that 
are thousands of years old.
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Nuclear Radiation

You beta learn this radiation stuff — I promise it’s not alpha nothing...
1) What is an alpha particle made up of?
2) Describe what happens during the emission of beta and gamma radiation.
3) Complete the following decay equations by filling in any missing radiation symbols,  

proton numbers or nucleon numbers: 
a)  Pu94

242  Æ U_
_

2
4α +        b)  K_

_  Æ 1–Ca20
40 0β +        c)  Rn86

222  Æ _Po _
_

84
218 +       d)  C6

14  Æ 1–N__ 0β +

If an atom is unstable, it can undergo radioactive decay and give off nuclear radiation.  
By decaying, a nucleus emits particles or energy, making it more stable.
There are three kinds of nuclear radiation you need to know about:

In Beta Decay (Symbol b), an Electron is Emitted
1) A neutron in the nucleus turns into a proton and an electron.

The electron is emitted from the nucleus and is called a beta particle.  
2) As a result the proton number of the nucleus goes up by 1, 

but the nucleon number doesn’t change.

Ra88
228  Æ 1–Ac89

228 0β +     Nucleon number: 228 = 228 + 0
Proton number: 88 = 89 – 1

EXAMPLE: The beta decay of radium-228.

Gamma Decay (Symbol g) Emits Electromagnetic Radiation
1) High-energy electromagnetic radiation, called gamma radiation 

is emitted from the nucleus.  
2) The number of protons and neutrons in the nucleus stays the same.  

I53
131  Æ I53

131
0
0+ γ    Proton and nucleon numbers don’t change. 

EXAMPLE: The gamma decay of iodine-131.

In Alpha Decay (Symbol a), an Alpha Particle is Emitted

2) As a result, the proton number of the atom that has decayed 
goes down by 2 and the nucleon number goes down by 4.

1) An alpha particle is emitted from the nucleus.
It is made up of two protons and two neutrons. 

Ra88
226  Æ Rn86

222
2
4α +

EXAMPLE: The alpha decay of radium-226.

Proton and nucleon numbers are both conserved 
during all forms of radioactive decay:  

Nucleon number: 226 = 222 + 4    Proton number: 88 = 86 + 2
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Planning an Experiment and Collecting Data

Section 7 — inveStigating and interpreting

Scientists do Experiments to Answer Questions
You need to plan experiments carefully to make sure you get the best results possible:
1) Make a prediction or hypothesis — a testable statement about what you think will happen.
2) Identify your variables (see below).
3) Think about any risks, and how you can minimise them.
4) Select the right equipment for the job — if you’re measuring a time interval in minutes 

you might use a stopwatch, but if it’s in milliseconds you may need to get a computer to 
measure the time for you, as your reaction time could interfere with your results.

5) Decide what data you need to collect and how you’ll do it.
6) Write a clear, detailed method describing exactly what you’re going to do.

You Need to Know What Your Variables Are
A variable is anything that has the potential to change in an experiment.

The independent variable is the thing 
you change in an experiment.

The dependent variable is the thing 
you measure in an experiment.

All the other variables must be kept the same to make it a fair test.  These are control variables. 

The independent variable is the height you drop the object from — it’s what you change.  
The dependent variable is the time the object takes to fall — it’s what you measure.  
Everything else in the experiment should be controlled, so no other variables change.  
For example, the same object should be used throughout the experiment (so its size 
and mass don’t change), the conditions in the room you do the experiment in should be 
constant, and you shouldn’t change your measuring equipment halfway through.

EXAMPLE:  An experiment investigates how the height an object is dropped from 
affects the time it takes to fall.  Identify the variables in this experiment.

Repeating an Experiment Lets You Calculate a Mean
Normally, you’ll get a slightly different result every time you do an experiment, due to small 
random errors you can’t control.  E.g. — holding your head in a slightly different place each 
time you take a measurement from a ruler will cause random errors in the length you read off.
You can reduce the effect of these random errors on your results by repeating your experiment 
and taking an average, or mean, of your results.
To find the mean: 1) Add together the results of each repeat.

2) Divide this total by the number of repeats you did.

Independent variables — not keen on accepting help...
1) A scientist investigates how changing the potential difference across a circuit component 

affects the current through it.  He measures the current three times at each potential difference.  
 a) Identify the independent and dependent variables in this investigation.
 b) For a potential difference of 4 V, the scientist records currents of 0.13 A, 0.17 A and 0.12 A.  
  Calculate the mean current through the component when the potential difference is 4 V.
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Potential difference / V

Analysing Your Data

Anomalouse results — unusual results in the insect breeding program...
1) The table on the right gives the speed of a cyclist  

as he accelerates from rest.  Plot a graph of his  
speed against time, and draw a line of best fit.  

The correlation describes the relationship between the variables.  Data can show:

POSITIVE CORRELATION: 

As one variable increases, 
the other increases.

NEgATIVE CORRELATION:  

As one variable increases, 
the other decreases.

NO CORRELATION:

No relationship 
between the variables.

Graphs are the easiest way to see any patterns or trends in your results.

You can Present Your Results on a Graph

1) Usually the independent variable goes on the x-axis (along the bottom) and the dependent 
variable goes on the y-axis (up the side).  Make sure you label both axes clearly with the 
quantity and units.  Pick a sensible scale — both axes should go up in sensible steps, and 
should spread the data out over the full graph (rather than bunching it up in a corner).

2) Plot your points 
using a sharp 
pencil.  This 
will help make 
sure they’re as 
accurate 
as possible.

4) Draw a line of best fit for your results.  Around 
half the data points should be above your line 
of best fit and half below it.  The line could be 
straight or curved, depending on your data.

3) Identify any anomalous results, 
like this one — it’s way off the 
general trend, and looks like 
it was caused by a mistake.  
Ignore anomalous results when 
drawing your line of best fit.

Graphs Can Show Different Kinds of Correlation

Remember, just because two variables are correlated it doesn’t mean a change in one  
is causing a change in the other — there could be a third variable affecting them both.

time / s 0.0 2.0 4.0 6.0 8.0 10.0
speed /

ms –1 0.0 0.7 1.8 2.6 3.2 4.2
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Conclusions and Uncertainty

In conclusion, I need a cup of tea...
1) A student records how long it takes for a car to stop when the brakes are fully applied.   

He uses a stopwatch, and gets a measurement of 7.628 ± 0.0005 seconds.   
a) What is the smallest difference the stopwatch can measure? 
b) The student says from his result he can accurately report the time taken for  
 the car to stop to 4 significant figures.  Is he correct?  Explain your answer.

Draw Conclusions that Your Results Support

You should draw a conclusion that explains what your data shows.  

Think About How to Improve Your Experiment

You should always think about how your experiment could be improved:

1) Your conclusion should be limited to what you’ve actually done and found 
out in your experiment.  For example, if you’ve been investigating how the 
force applied to a spring affects how much it stretches, and have only used 
forces between 0 and 5 N, you can’t claim to know what would happen if 
you used a force of 10 N, or if you used a different spring.

2) You also need to think about how much you can believe your 
conclusion, by evaluating the quality of your results (see below).  
If you can’t trust your results, you can’t form a strong conclusion.

You can Never Measure Anything Exactly

1) There will always be errors and uncertainties in your results caused by lots of 
different things, including human error (e.g. your reaction time).  The more errors 
there are in your results, the lower the quality of your data.  This will affect the 
strength of your conclusion (see above).  

2) All measurements will have some uncertainty due to the equipment used.   
For example, if you measure a length with a ruler, you can only measure it to the 
nearest millimetre, as that’s the smallest difference marked on the ruler’s scale.  
If you measure a length with a ruler as 14 mm you can write this as 14 ± 0.5 mm 
to show that you could be up to half a millimetre out either way.

3) If you have a value without a ± sign, the number of significant figures gives you an 
estimate of the uncertainty.  For example, 72 ms–1 has 2 significant figures, so 
without any other information you know this value must be 72 ± 0.5 ms–1 — if the 
value was less than 71.5 ms–1 it would have been rounded to 71 ms–1, if it was greater 
than 72.5 ms–1 it would have been rounded to 73 ms–1. 

1) Did the experiment actually test what it was supposed to?
Could you make it more relevant to the question?

2) Was there anything you could have done to prevent 
some of the errors in your results?

3) Would different apparatus or a different method 
have given you better results?
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Answers
N.B. — All numerical answers here have been rounded to 
the same number of significant figures as the given data value 
with the least number of significant figures (see page 1).

Section 1 — Forces and Motion
Page 2 — Speed, Displacement and Velocity
1  speed = distance ÷ time  = 1500 ÷ 210 = 7.142...  

= 7.1 ms–1 (to 2 s.f.) 

2  distance = speed × time  = (3.0 × 108) × (8.3 × 60) 
= 1.494 × 1011  
= 1.5 × 1011 m (to 2 s.f.)

3  time = distance ÷ speed.  1.5 m = 150 cm,  
so time = 150 ÷ 0.24 = 625 = 620 seconds (to 2 s.f.)

4  t = s ÷ v = (1 × 1000) ÷ 50 = 20 s

5  s = v × t  = 7.50 × 15.0 = 112.5  
= 113 m south (to 3 s.f.)

Page 3 — Drawing Displacements and 
Velocities
1 a)   

12 m

 b) 
  

110 miles

2 a) 

  

6
0
 m

s –
1

 b) 
  

120 miles per hour

Page 4 — Combining Displacements and 
Velocities
1 a) By measuring: 

  

6.4
cm

=
6.4

m

(Scale:

1 cm to 1 m)5.0 m

4
.0

 m

 b) 

  

2.3 cm = 11.5 miles

Scale: 1 cm to

5 miles

1
5
.0

 m
il
e
s

1
5
.0

 m
ile

s

2  By measuring:

  

– = + =

3
.0

 m
s

–
1

1.0 ms
–1

1.0 ms
–1

3
.0

 m
s

–
1

(Scale: 1 cm

to 1 ms  )
–1

3
.2

c
m

=
3
.2

m
s

–
1

1.0 ms
–1

3
.0

 m
s

–
1

   Or by Pythagoras: ∆ v  = . .3 0 1 02 2+  = 3.162... 
= 3.2 m (to 2 s.f.)

Page 5 — Resolving Vectors
1  Horizontal component  = vx = v cos θ  = 12 × cos 68 

= 4.495... = 4.5 ms–1 (to 2 s.f.)
   Vertical component = vy  = v sin θ  = 12 × sin 68 

= 11.128... = 11 ms–1 (to 2 s.f.)

2  cos q = v
vx .  Rearranging for q gives:

q  =  cos–1
v
vx` j = cos–1 98

67  = 46.868...

= 47° (to 2 s.f.)

3  Vertical velocity = vy  = v sin q = 5.9 × sin 23 
= 2.305... ms–1

   Time taken to descend 150 m  = v
s
y
 = . ...2 305

150  

= 65.067...  
= 65 s (to 2 s.f.)

Page 6 — Acceleration
1  u = 12.8 ms–1 to the left = –12.8 ms–1

v = 18.3 ms–1 to the right = +18.3 ms–1

a  = t
v u–  = .

. ( . )
22 0

18 3 12 8– –  = 1.4136...

= 1.41 ms–2 to the right (to 2 s.f.)

2  t = a
v u–  = .

. .
0 18

4 5 1 5–  = 16.66... = 17 s (to 2 s.f.)

3  u  = v – (a × t) = 0 – (–0.41 × 3.7) = 1.517  
= 1.5 ms–1 (to 2 s.f.)

Page 7 — Acceleration Due To Gravity

1  t = a
v u–  = .

.
9 81

4 9 0
–

– –  = 0.4994... = 0.50 s (to 2 s.f.)

2  u = v – (a × t)  = –26.5 – (–9.81 × 2.15) = –5.4085 
= 5.41 ms–1 downwards (to 3 s.f.)

3  v  = u + (a × t) = 0 + (–9.81 × 10.0) = –98.1   
= 98.1 ms–1 down

4  t = a
v u–  = .

.
9 81

24 5 0
–

– –  = 2.4974... = 2.50 s (to 3 s.f.)

5  u = v – (a × t)  = –10.7 – (–9.81 × 1.90) = 7.939 
= 7.94 ms–1 up (to 3 s.f.)
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Answers
Page 8 — Displacement-Time Graphs
1  E.g.

    D
is

p
la

c
e

m
e

n
t 

(m
)

Time (s)

2  E.g.

   D
is

p
la

c
e
m

e
n
t 
(m

)

Time (s)

3  E.g.

    D
is

p
la

c
e

m
e

n
t 

(m
)

Time (s)

4  E.g.

    D
is

p
la

c
e

m
e

n
t 

(m
)

Time (s)

Page 9 — Displacement-Time Graphs
1 a) It is accelerating (towards the start line).
 b)  Between 3 and 4 seconds it is moving towards the start 

line and decelerating until it is stationary.  It travels 20 
metres in this time.  Between 4 and 6 seconds it remains 
stationary zero metres from the start line. 

 c) Velocity  = (160 – 40) ÷ (10 – 8)  
= 120 ÷ 2 = 60 ms–1

 d) Average velocity  = (180 – 80) ÷ 14 = 100 ÷ 14  
= 7.1428... = 7 ms–1 (to 1 s.f.)

 e) Average speed  = (80 + 180) ÷ 14 = 260 ÷ 14  
= 18.571... = 20 ms–1 (to 1 s.f.)

Page 11 — Velocity-Time Graphs

1 a) A (0 s-10 s), acceleration =  10 0
10 6

–
–  = 0.4 ms–2,

   B (10 s-20 s), acceleration =  20 10
10 10

–
–  = 0 ms–2, 

   C (20 s-30 s), acceleration = 30 20
2 10

–
–  = –0.8 ms–2

 b) A (0 s-10 s), area = ½(6 + 10) × 10 = 80 m
   B (10 s-20 s), area = 10 × 10 = 100 m
   C (20 s-30 s), area = ½(10 + 2) × 10 = 60 m
   Total distance travelled = 80 + 100 + 60 = 240 m

2 a) A (0 s-3 s), acceleration = 3 0
15 0

–
–  = 5 ms–2

   B (3 s-4 s), acceleration = 4 3
10 15

–
–  = –5 ms–2

   C (4 s-6 s), acceleration = 6 4
20 10

–
–  = 5 ms–2

 b) A (0 s-3 s), area = ½ × 15 × 3 = 22.5 m
   B (3 s-4 s), area = ½(15 + 10) × 1 = 12.5 m
   C (4 s-6 s), area = ½(10 + 20) × 2 = 30 m
   Total distance travelled = 22.5 + 12.5 + 30 = 65 m

Page 12 — Adding and Resolving Forces
1 a) 8 – 5 = 3 N to the right, forces are unbalanced.
 b)  700 – 200 = 500 N to the left, forces are unbalanced.
 c)  2 – 2 = 0 N, forces are balanced.

2  

   

12°

F
H

920 N

 
   FH = F cos θ   = 920 × cos 12 = 899.89...  

= 900 N (to 2 s.f.)

3  FV  = F sin θ  = 150 × sin 78 = 146.72...  
= 150 N (to 2 s.f.)

   
78°

F
H

1
5
0

N

F
V

Page 14 — Forces and Acceleration
1  F = m × a = 840 × 0.50 = 420 N

2  F = m × a  = 0.120 × 9.81 = 1.1772  
= 1.18 N (to 3 s.f.)

3  a = F ÷ m = 250 ÷ 0.5 = 500 ms–2

4  m = F ÷ a = 55 000 ÷ 0.275 = 200 000 kg

5  a = F ÷ m  = 8600 ÷ 15 000 = 0.573... ms–2

   a = t
v u– , so v  = u + (a × t) = 0 + (0.573... × 25)  

= 14.333... = 14 ms–1 (to 2 s.f.)
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Section 2 — Energy
Page 15 — Kinetic Energy
1  Ek = ½ × m × v2 = ½ × 0.125 × 72.02 = 324 J

2  Ek = ½ × m × v2 so m  = 
v
E2× k
2  = .

15
2 5 4 10× ×

2

7
 

= 4.8 × 105 kg

3  v  = m
E2× k  = .

.
0 057

2 1 0 10× × 6–
 = 5.9234... × 10–3

= 5.9 × 10–3 ms–1 (or 0.59 cm s–1) (to 2 s.f.)

Page 16 — Gravitational Potential Energy
1  Ep = m × g × h  = 750 × 9.81 × 350 = 2 575 125

= 2.6 × 106 J (to 2 s.f.)

2  m = 
g h
E
×
p  = . .9 81 7 00

1715
×  = 24.974... = 25.0 kg (to 3 s.f.)

3  h = m g
E
×
p  = . .65 0 9 81

24 700
×  = 38.735... = 38.7 m (to 3 s.f.)

Page 17 — Conservation of Energy
1  Ek lost = Ep gained = 2850 J 

So Ep = m × g × h = 2850 J

m = 
g h
E
×
p  = . .9 81 5 10

2850
×  = 56.964... = 57.0 kg (to 3 s.f.)

2  Ep lost = m × g × h = 0.475 × 9.81 × 0.920 = 4.28697 J
Ep lost = Ek gained, so Ek  = ½ × m × v2 = 4.28697 J

   v = m
E2× k  = .

.
0 475

2 4 28697×   = 4.2485... 

= 4.25 ms–1 (to 3 s.f.)

3  Ek lost = ½ × m × v2 = ½ × 0.015 × 4202 = 1323 J
   Ep gained = Ek lost, so Ep = m × g × h = 1323 J

  h  = m g
E
×
p  = . .0 015 9 81

1323
×  = 8990.8... 

= 9000 m (to 2 s.f.)

Page 18 — Work
1  W = F × s = 25 × 44 = 1100 J

2  W  = F cosθ  × s = 17 × cos 35 × 2.5 = 34.81... 
= 35 J (to 2 s.f.)

Page 19 — Work
1 a) W = F × s = 125 × 2.50 = 312.5 = 313 J (to 3 s.f.)
 b) Ep   = m × g × h = 5.75 × 9.81 × 2.50 = 141.01... 

= 141 J (to 3 s.f.)
 c) Work done = increase in Ek + increase in Ep so:
   Ek  = W – Ep = 312.5 – 141.01... = 171.48... 

= 171 J (to 3 s.f.)

 d) v = m
E2× k   = .

. ...
5 75

2 171 48×  = 7.7230... 

= 7.72 ms–1 (to 3 s.f.)

Page 20 — Power

1  P = t
W  = .4 0

250  = 62.5 = 63 W (to 2 s.f.)

2  t = P
W  = 14 1000

91 1000
×
×  = 14 000

91000  = 6.5 s

3  W = F × s = 276 × (1.25 × 1000) = 345 000 J 

P = t
W  = .2 5 60

345 000
×  = 2300 W

Page 21 — Power
1  P  = F × v = 1.80 × 105 × 40.0 

= 7.20 × 106 W (or 7.20 MW)

2  The skydiver’s weight is equal to the force, F, exerted by 
gravity on her mass, so:

  F = v
P  = 45

31500  = 700 N

3  v = F
P  = .

1650
5 20 10× 4

 = 31.515... = 31.5 ms–1 (to 3 s.f.)

Page 22 — Efficiency
1  Useful energy out  = Ep = m × g × h 

= 12.9 × 9.81 × 2.50 = 316.3725 J

   Efficiency  = × %
total energy in

useful energy out
100  

= .
375

316 3725  × 100% = 84.366 = 84.4%

2 a) Ek  = ½ × m × v2 = ½ × 560 × 252 = 1.75 × 105

= 1.8 × 105 J (or 180 kJ) (to 2 s.f.)

 b) Efficiency  = × %
total energy in

useful energy out
100  

= 
.

.
1 4 10

1 75 10
×
×

6

5
 × 100% = 12.5 

= 13% (to 2 s.f.)

Section 3 — Materials
Page 24 — Forces and Springs
1  F = k × Dl  = 64.1 × 0.245 = 15.7045 

= 15.7 N (to 3 s.f.)

2  Dl = 
k
F  = .84 0

378  = 4.50 m

3 a) F = m × g = 7.4 × 9.81 = 72.594 N 

k = 
l

F
∆  = .

.
0 084

72 594  = 864.214... = 860 Nm–1 (to 2 s.f.)

 b)  F = k × Dl = 864.214... × 0.095 = 82.100... N

m = g
F  = .

. ...
9 81

82 100  = 8.369... = 8.4 kg (to 2 s.f.)

Yes, the bag can be taken on the flight.

4 a) The maximum force at which an object’s extension is 
still proportional to the force applied to it.

 b) It could have been stretched beyond its elastic limit.
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Section 4 — Electricity
Page 25 — Current and Potential Difference

1  I = t
Q , so t = 

I
Q  = .3 0

12  = 4.0 s

2  V = 
Q
W , so W = V × Q = 1.5 × 9.2 = 13.8 V

3  I = t
Q , so Q = I × t = 3.80 × 275 = 1045 C

   V = Q
W  = 1045

9540  = 9.129... = 9.13 V (to 3 s.f.)

Page 26 — Current in Electric Circuits
1  0.5 = I1 + 0.2 + 0.05

0.5 = I1 + 0.25
I1 = 0.5 – 0.25
I1 = 0.25 A

2  0.4 + 0.3 + I2 = 1.3
0.7 + I2 = 1.3
I2 = 1.3 – 0.7
I2 = 0.6 A

Page 27 — Potential Difference in Electric 
Circuits
1 a)  12 = VM + 3

VM  = 12 – 3
= 9 V

 b) 12 = 6 + 2 + VS
  VS  = 12 – 6 – 2

= 4 V

2  12 V

Page 28 — Resistance
1  V = I × R, so V = 2.5 × 15 = 37.5 = 38 V (to 2 s.f.)

2  I = R
V  = .

2500
6 0  = 0.0024 A (or 2.4 mA)

3  R = 
I
V  = .

.
0 024
1 5  = 62.5 = 63 Ω  (to 2 s.f.)

Page 29 — I-V Graphs
1  Provided the temperature is constant, the current 

though an ohmic component is directly proportional to 
the potential difference across it (V = IR).

2 a)

   

V (V)

I (A)

 b) 

   

V (V)

I (A)

 c)  

   

V (V)

I (A)

Page 30 — Power in Circuits
1  P = V × I = 6.5 × 0.12 = 0.78 W

2 a) I = V
P  = 14

45  = 3.214... = 3.2 A (to 2 s.f.) 

 b) W = P × t = 45 × 12 = 540 J

Page 31 — Power in Circuits
1  P = I2R = 1.22 × 2400 = 3456 = 3500 W (to 2 s.f.)

2  P = R
V2

 = 100
62

 = 100
36  = 0.36 W

   W = P × t = 0.36 × 60 = 21.6 = 20 J (to 1 s.f.)

3  R = 
I
P
2  = 

.
.

0 50
6 0

2  = 24 Ω 
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Section 5 — Waves
Page 32 — Waves
1  E.g.

  

D
is

p
la

c
e

m
e

n
t 

(m
)

Distance
(m)

0.02 0.04 0.06 0.08 0.10

0.01

-0.01

0

2  E.g.

  

D
is

p
la

c
e

m
e

n
t 

(m
)

Time (s)

1 2 3

0.05

-0.05

0

Page 33 — Frequency and the Wave Equation

1  T = 
f
1  = 

.6 25 10
1
× 5  = 1.60 × 10–6 s

2  f = 
T
1  = .0 0012

1  = 833.33... = 830 Hz (to 2 s.f.)

3  v = f × λ  = 3.5 × 1.4 = 4.9 ms–1 

4 a) f = 
T
1  = .7 1

1  = 0.1408... = 0.14 Hz (to 2 s.f.)

 b) v = f × λ , so λ  = 
f
v   = 

. ...0 1408
180  = 1278 

= 1300 m (to 2 s.f.)

Page 34 — Superposition of Waves
1 a) If two waves meet they will briefly combine and become 

one single wave, with a displacement equal to the 
displacement of each individual wave added together.

 b)  When the amplitude of the combined wave is larger 
than the amplitude of the individual waves.

 c)  When the amplitude of the combined wave is smaller 
than the amplitude of the individual waves.

2  Amplitude = 0.67 + 0.67 = 1.34 mm

3  The waves will cancel each other out completely,  
so the amplitude will be 0 m.

4  Amplitude = 35 + 41 = 76 cm

Page 35 — Reflection and Diffraction
1  Angle of incidence (i) = angle of reflection (r)
2  E.g. 

i
r

normal

incident wave

reflected wave

mirror

3  When the gap is about the same size as the wavelength, 
there will be a lot of diffraction.  When the gap is made 
slightly larger, the amount of diffraction will decrease.

4  Light diffracts as it passes through the slit and forms a 
diffraction pattern of light and dark fringes.

Page 36 — Refraction
1  The wave slows down without changing direction.

2  The wave slows down and changes direction.

3  n = 
sin
sin

r
i  = sin

sin
39
72  = 1.511... = 1.5

4  n = sin
sin

r
i  so sin r  = sinn

i  = .
sin
1 3
23  = 0.3005...

   so r = sin–1 0.3005... = 17.49... = 17° (to 2 s.f.)

Section 6 — Atoms and Radioactivity
Page 37 — Atomic Structure
1 a) 95 protons, 146 neutrons
 b) 94 protons, 145 neutrons
 c) 38 protons, 52 neutrons
 d) 27 protons, 33 neutrons
 e) 88 protons, 138 neutrons

2  An isotope is a different form of the same 
element.  It has the same number of protons 
but a different number of neutrons.

Page 38 — Nuclear Radiation
1  An alpha particle is made up of two protons and two 

neutrons.

2  In beta radiation a neutron in the nucleus turns into a 
proton and an electron.  The electron is emitted from 
the nucleus. 
In gamma radiation high-energy electromagnetic 
radiation is emitted from the nucleus.  There is no 
change to the number of protons and neutrons.

3 a) Pu94
242  Æ U92

238
2
4α +

 b) K19
40  Æ Ca20

40
1
0

– β +
 c) Rn86

222  Æ Po84
218

2
4α +

 d) C6
14  Æ N7

14
1
0

– β +
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Section 7 — Investigating 
and Interpreting
Page 39 — Planning an 
Experiment and Collecting Data
1 a) Independent variable: potential difference across the 

component.  
Dependent variable: current through the component.

 b) (0.13 + 0.17 + 0.12) ÷ 3 = 0.14 A

Page 40 — Analysing Your Data
1   

1.0

2.0

3.0

4.0

5.0

0.0

0.0 2.0 4.0 6.0 8.0 10.0

Time / s

S
p
e
e
d
 /
 m

s
–
1

Page 41 — Conclusions and Uncertainty
1 a) 0.001 s (or 1 ms)

 b) No.  There will be some human error in the result 
caused by the student’s reaction time.
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F
filament lamps  29
forces  12–14, 18, 19, 21

on springs  23, 24
resolving forces  12
resultant forces  12–14

frequency  33

G
gamma decay  38
graphs  40

displacement-time graphs  8, 9
force-extension graphs  24
I-V graphs  29
velocity-time graphs  10, 11

gravitational potential energy  16
gravity  7

H
Hooke’s law  23, 24
hypotheses  39

I
independent variables  39
index notation  1
interference

constructive  34, 35
destructive  34, 35

isotopes  37
I-V graphs  29

K
kinetic energy  15
Kirchoff’s laws  26, 27

L
limit of proportionality  24
lines of best fit  40
longitudinal waves  32

N
negative correlation  40
neutrons  37
Newton’s laws of motion  13, 14
nuclear radiation  38
nucleon numbers  37, 38
nucleons  37
nuclide notation  37

O
Ohm’s law  29

P
phase  34
planning experiments  39
plastic deformation  24
positive correlation  40
potential difference  25, 27–31
power  20, 21, 30, 31
proton numbers  37, 38
protons  37
Pythagoras’ theorem  4

R
radiation  38
radioactive decay  38
random errors  39
reflection  35
refraction  36
refractive indices  36
resistance  28, 29, 31
resultant forces  12–14
resultant vectors  4

S
scale drawings  3
significant figures  1, 41
Snell’s law  36
speed  2

of a wave  33
spring constants  23
springs  23, 24
standard form  1
superposition  34
symbols  1

T
time period  32, 33
transverse waves  32
trigonometry  5, 18, 36

U
uncertainties  41
units  1

V
variables  39
vectors  2–5, 12

resolving  5, 12
resultant  4

velocity  2–6, 8–11
combining velocities  4

velocity-time graphs  10
voltage  25, 27–31

W
wavelength  32, 33, 35
waves  32–36

diffraction  35
frequency  33
graphs  32
longitudinal  32
reflection  35
refraction  36
speed  33
superposition  34
time period  32, 33
transverse  32
wave equation  33

work  18–21

A
acceleration  6–11, 13, 14

due to gravity  7
alpha decay  38
amplitude  32
anomalous results  40
atomic structure  37
atoms  37, 38
averages  39

B
beta decay  38

C
charge  25, 26
circuits  25–27, 30, 31
combining vectors  4
conclusions  41
conservation of charge  26
conservation of energy  17, 27
constructive interference  34, 35
control variables  39
conventional current  25
correlation  40
current  25, 26, 28, 29, 31

D
dependent variables  39
destructive interference  34, 35
diffraction  35
diodes  29
displacement  2–4, 8, 9

combining displacements  4
waves  32

displacement-time graphs  8, 9
distance  2, 9, 10

E
efficiency  22
elastic limit  24
elastic strain energy  24
electricity  25–31

circuits  25–27, 30, 31
current  25, 26, 28, 29, 31
I-V graphs  29
potential difference  25, 27–31
power  30, 31
resistance  28, 29, 31

electrons  37
as current  25
beta decay  38

energy  15–22
conservation of energy  17, 27
efficiency  22
elastic strain energy  24
gravitational potential energy  16
in circuits  27
kinetic energy  15
power  20, 21
work  18–21

errors  39, 41
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